
 1 

SEASONAL INFLUENZA IN THE UNITED STATES, FRANCE, AND 

AUSTRALIA: TRANSMISSION AND PROSPECTS FOR CONTROL. 

 

Gerardo Chowell1*, Mark A Miller2, Cécile Viboud2 

   

1 Theoretical Division (MS B284), Los Alamos National Laboratory,  

Los Alamos, NM 87545, USA 

2 Fogarty International Center, National Institutes of Health, 

16 Center Drive, Bethesda, MD, 20892, USA  

 

Running title: Influenza transmission and control 

 

Word count: abstract: 193; text: 4,315 

Keywords: influenza, epidemic, transmissibility, reproduction number, mortality, 

morbidity, virus subtype, vaccination, United States, France, Australia. 

 

Abbreviations: Rp, reproduction number in a partially immune population, R0, basic 

reproduction number, US, United States; P&I, Pneumonia and Influenza; CDC, 

Centers for Disease Control and Prevention; CFP, Case Fatality Proportion; ILI, 

Influenza-Like Illness; SEIR, Susceptible-Exposed-Infectious-Recovered.

                                                
* Corresponding author. Email: chowell@lanl.gov Phone: 505-665-9176 Fax: 505-
665-5757  



 2 

Abstract 

Recurrent epidemics of influenza are observed seasonally around the world 

with considerable health and economic consequences. A key quantity for the control 

of infectious diseases is the reproduction number, which measures the 

transmissibility of a pathogen and determines the magnitude of public health 

interventions necessary to control epidemics. Here we applied a simple epidemic 

model to weekly indicators of influenza mortality to estimate the reproduction 

numbers of seasonal influenza epidemics spanning 3 decades in the United States, 

France, and Australia. We found similar distributions of reproduction number 

estimates in the three countries, with mean value 1.3 and important year-to-year 

variability (standard error 0.09). Estimates derived from two different mortality 

indicators (pneumonia and influenza excess deaths and influenza-specific deaths) 

were in close agreement for the United States (correlation =0.61, P<0.001) and 

France (correlation=0.79, P<0.001), but not Australia. Interestingly, high prevalence 

of A/H3N2 influenza viruses was associated with high transmission seasons 

(P=0.006), while B viruses were more prevalent in low transmission seasons 

(P=0.004). 

 The current vaccination strategy targeted at people at highest risk of severe 

disease outcome is suboptimal because current vaccines are poorly immunogenic in 

these population groups.  Our results suggest that interrupting transmission of 

seasonal influenza would require a relatively high vaccination coverage (>70%) in 

healthy individuals who respond well to vaccine, in addition to periodic re-

vaccination due to evolving viral antigens and waning population immunity. 
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INTRODUCTION 

Annual influenza epidemics are observed worldwide with substantial 

morbidity and mortality impact. In the United States, between 5 and 20% of the 

population become sick with influenza every year, and 36,000 people on average die 

from complications of the disease, often following a secondary bacterial infection 

[1, 2]. The overall economic burden of influenza in the US alone has been estimated 

at more than 11 billion dollars annually [3]. 

Influenza has marked seasonal patterns in temperate areas of the world, 

where large and intense outbreaks occur once a year in wintertime, followed by 

fade-out periods in warmer months where no influenza activity is detected. The 

influenza virus is able to persist in populations through continuous evolution in the 

form of point mutations in the virus antigenic structure [4]. Major changes in the 

virus composition can give rise to pandemics, which are major global epidemics that 

can cause dramatic morbidity and mortality rates. There are currently 3 influenza 

(sub)types co-circulating in humans (A/H3N2, A/H1N1 and B) [4].  

An important quantity in epidemiology and disease control is the basic 

reproduction number (R0), which represents the number of secondary cases 

generated by a primary case during the infectious period, in an entirely susceptible 

population [5, 6]. This quantity is a measure of the transmissibility of a pathogen 

and can help determine the intensity of interventions necessary to control an 

outbreak [5]. If R0 is greater than one then an epidemic may occur, while 

transmission cannot be sustained when R0 <1. 
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The reproduction number is a central quantity to evaluate whether disease 

control is possible, in particular when a vaccine is available. Large-scale influenza 

vaccination programs have been established in developed countries since the early 

1980s, and are now starting in developing countries [7]. Despite widespread vaccine 

use, there are indications that the current annual vaccination strategy is not optimal 

for reducing influenza mortality burden [8]. Vaccination is targeted at people at high 

risk of severe disease outcome, i.e., the elderly and those with chronic conditions, 

for whom influenza vaccines may be less immunogenic [9]. A key issue today is 

whether annual immunization of high transmitter groups, in particular children, 

could achieve herd immunity and interrupt seasonal transmission [10]. Estimates of 

the transmissibility of seasonal influenza epidemics are necessary to evaluate 

whether this is feasible and hence refine existing control strategies.  

Past studies have estimated the reproduction number of individual influenza 

seasons, in particular for pandemics [11-19]. However, no study has yet reported 

estimates of the reproduction number for several countries and consecutive 

influenza seasons in the inter-pandemic period, where a fraction of the population is 

immune due to previous influenza exposure or vaccination. Considering multiple 

epidemics occurring in different years and locations is important to capture the year-

to-year variability of influenza epidemics [20], as well as their potential 

geographical heterogeneities [19, 21, 22]. Here, we apply a simple epidemic model 

to weekly indicators of influenza-related mortality in the United States, France, and 

Australia. We estimate the reproduction number of seasonal epidemics spanning 3 

decades in these countries, and explore the relationship between reproduction 
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number and viral prevalence. We then use our reproduction number estimates to 

discuss whether interrupting transmission of seasonal influenza by vaccination is 

feasible, given the efficacy of currently available vaccines. 
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MATERIALS AND METHODS 

 

Demographic and epidemiological data. 

General approach. Assessment of the transmission patterns in influenza 

epidemics is not straightforward because of lack of reliable morbidity data, due to 

non-specific clinical symptoms and infrequent confirmation by laboratory tests [2, 

18, 23]. Alternatively, influenza-related mortality is considered a good indicator of 

disease patterns, albeit with some caveats [2, 18, 23]. The severe complications 

triggered by influenza infection, such as bacterial pneumonia, are often diagnosed 

after the virus has been cleared [2, 24]. Many influenza-related deaths are therefore 

not coded as influenza but rather as underlying respiratory or chronic conditions. 

The traditional way to assess influenza activity patterns is to calculate “excess 

mortality” from broad death categories, as the mortality in winter seasons in excess 

of a non-epidemic baseline. Excess deaths from pneumonia and influenza (P&I) 

have been shown in several studies to be a reliable and specific endpoint for 

studying timing and amplitude of influenza-related mortality, both at the local and 

national scales [2, 18, 23]. Alternatively, the subset of P&I deaths coded specifically 

as influenza may be even more specific, especially for epidemic timing [2, 18], but 

these data capture a very small fraction of the overall influenza mortality burden. 

Both P&I excess mortality and influenza-specific deaths have been used in the past 

to estimate influenza transmissibility [14-16, 19], and we consider both indicators 

here.  



 7 

Mortality data. Weekly pneumonia and influenza mortality time series were 

computed from death certificates collected by national agencies for vital statistics in 

the 3 countries (United States, 1972-2002, National Center for Health Statistics; 

Australia, 1972-1997, Australian Bureau for Statistics; France, 1972-1997, Institut 

National de la Santé et de la Recherche Médicale, Service Commun 8). We used 

codes 470-474 and 480-486 from the International Classification of Diseases (ICD) 

8th revision, codes 480-487 from ICD-9 and codes J10.0-J18.9 from ICD-10 to 

select deaths due to P&I. For US data, we used the standard correction factor given 

by the National Center for Health Statistics to account for the decrease in 

pneumonia code use following the transition between ICD-9 and ICD-10 in 1999. 

To derive death rates, we obtained annual population size estimates from the U.S. 

Census Bureau [25], the French National Institute for Statistics and Economic 

Studies [26], and the Australian Bureau of Statistics [27].  

P&I excess mortality models. We measured the influenza contribution to 

weekly P&I mortality series as those P&I deaths in excess of a seasonal baseline, 

where the baseline mirrors the expected level of mortality in the absence of 

influenza activity (Figure 1 and supplement). To fit the baseline, we used a classical 

seasonal regression approach developed by Serfling in 1963 [28], where a linear 

regression model with harmonic terms is fitted to non-epidemic weeks to produce 

the baseline. This approach has been applied to mortality data in different countries 

[8, 21, 22, 29] and at different geographical scales [18], and has also been compared 

with morbidity data [18].  

Influenza-specific mortality data. 
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The Serfling approach we applied to P&I data has limitations because it 

assumes that non-influenza deaths are seasonal and can be modeled by harmonic 

functions  [28]. By contrast, we can use the raw time series of influenza-specific 

mortality to estimate transmissibility, without fitting a seasonal baseline, because 

there are no deaths in non-influenza months.  

 

Transmission model 

Several studies have used mathematical models to describe the transmission 

dynamics of influenza within a susceptible population (e.g., see [30, 31]), although 

none has explored whether interrupting transmission by vaccination was feasible 

given currently available vaccines. We adapted a mass-action model previously 

developed for studying the transmissibility of the 1918 influenza pandemic in 

Geneva, Switzerland [11]. In the “SEIR” model, the population is divided in five 

categories: Susceptible (S), Exposed (E), Infectious (I), recovered/Protected (P) and 

Dead (D) (Figure 2). In this model, infection is transmitted between infectious and 

susceptible individuals, and no particular route of transmission is assumed (direct or 

indirect contact, through droplets, fomites or aerosols [32, 33]).  

The total population size at time t is given by N(t) = S(t) + E(t) + I(t) + P(t). 

We assume homogeneous mixing, that is, each individual has the same probability 

of having contact with any other individual in the population. Also, for each 

influenza season, the total population is assumed constant according to the 

population size estimate for a given country and year. As in a previous models of 

seasonal influenza (eg, [30]), susceptible individuals infected with the virus enter 
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the latent period (category E) at the rate β I/N where β is the mean transmission rate 

per day and I/N is the probability of contacting an infected individual out of the total 

population size N. Note that β represents a generic transmission rate that combines 

the effect of direct and indirect contacts (including, droplets, fomites and aerosols 

[32, 33]). Latent individuals progress to the infectious class at the rate 

  

!  (1/

  

!  is the 

mean latent period). Infectious individuals either recover or die from influenza at the 

mean rates γ and δ, respectively. Recovered individuals are assumed protected for 

the duration of the influenza season. The mortality rate is given by δ = γ [CFP/(1-

CFP)], where CFP is the mean case fatality proportion. The system of differential 

equations that describes the above epidemic process is given by: 

dS/dt  =  – β S I/N 

dE/dt  =    β S I/N – 

  

!  E 

dI/dt   =    

  

!  E  -  (γ + δ) I 

dP/dt  =    γ I 

dD/dt  =    δ I 

The population is assumed completely susceptible at the beginning of each 

influenza season prior to the first epidemic week, which is defined as the first week 

with nonzero influenza-related deaths. The initial number of influenza deaths D(0) is 

set to be the number of influenza deaths in the first epidemic week. Furthermore, 

using a case fatality proportion CFP, we also estimate the number of recovered 

individuals in the first epidemic week as P(0) = D(0)/CFP – D(0).  
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The reproduction number 

The number of secondary cases generated by a primary infectious case during its 

period of infectiousness in an entirely susceptible population is known as the basic 

reproduction number R0. From our model, the basic reproduction number R0 is 

given by the product of the transmission rate β and the mean infectious period 1/(γ + 

δ); that is, R0= β/(γ + δ).  

In the case of seasonal influenza epidemics, R0 cannot be estimated due to partial 

immunity in individuals infected in previous years with antigenically-related strains, 

and annual vaccination of a fraction of the high-risk population. However, we can 

estimate a different reproduction number, Rp, which measures the transmissibility at 

the beginning of an epidemic in a partially immune population [5]. For example, if a 

proportion p of a completely susceptible population is successfully immunized prior 

to an epidemic, then in a well-mixed population with a constant force of infection Rp 

= (1-p) R0. Estimating Rp is equivalent to assuming a fixed R0 for seasonal influenza 

and estimating a changing susceptibility (1-p) each season [34].  

 

 

Parameter estimation 

Definitions and baseline values for fixed and estimated parameters are given in 

Table 1; the mean latent and recovery periods (respectively 1/

  

!  and 1/γ), and the 

case fatality proportion (CFP) of influenza were fixed according to previous studies 

[3, 14, 35] . To estimate the value of unknown parameters, we rely on the general 
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approach of “trajectory matching”, where one searches for the combination of model 

parameters that produces an epidemic curve most statistically similar to the 

observed one. The transmission rate and the initial numbers of individuals in the 

exposed E(0) and infectious I(0) categories at the beginning of each flu season were 

estimated by least squares fitting of the model to the cumulative number of weekly 

influenza-related deaths or cases, during the initial take-off of the  epidemic. The 

advantage of using the cumulative over the weekly number of deaths is that the 

former smoothes out demographic noise and reporting delays [16]. Due to the short 

latent period for influenza (1.9 days), we assumed E(0) = I(0); this simplification 

allowed us to estimate only two parameters from the exponential growth phase of 

the epidemic. We also made the assumption that errors in the data (e.g., 

underreporting and misdiagnosis of cases) occurred at random and observations 

were as likely to overestimate, as they were to underestimate the true number of 

influenza deaths. The reproduction number (Rp) was estimated using data 

comprising the four epidemic weeks immediately preceding the epidemic peak. 

Hence, we only estimated the reproduction number (Rp) for those influenza seasons 

for which the increasing phase of the epidemic included at least four consecutive 

weeks.  We define the peak week as the week with the maximum death rate; this 

definition is not ambiguous since there is only major peak of illness or mortality for 

each influenza season [18]. In addition P&I and influenza-specific mortality peaks 

are meaningful since they coincide with peaks in influenza laboratory surveillance 

[18], and occur synchronously in other causes of deaths on which influenza has an 

impact [23].  
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Uncertainty of parameter estimates 

We estimated the uncertainty of the reproduction number via parametric 

bootstrap [36]. For each flu season, we simulated 200 alternate realizations of the 

epidemic trajectory, by perturbation of the best-fit curve of cumulative number of 

flu-related deaths. We added to the best-fit curve a simulated error structure 

computed using the increment in the “true” number of deaths/cases from day j to 

day j+1 as the Poisson mean for the number of new deaths observed in the j to j+1 

interval. The cumulative epidemic curves were then aggregated by week, the 

temporal scale of the epidemic data. The 95% bootstrap-based confidence intervals 

for the reproduction number should be interpreted as containing 95% of estimates if 

the analysis was repeated with the same model assumptions and if observational 

error was the only source of noise.  

 

Sensitivity analyses 

We conducted a number of sensitivity analyses to assess the validity of our 

assumptions and the robustness of our estimates. In particular, we checked the 

impact of choosing a Poisson error for bootstrap resampling, our assumptions on the 

distribution of the latent and infectious periods, the boundaries of confidence 

intervals, the number of weeks used in the estimations, and the CFP values. These 

analyses are summarized below; more details are given in the Supplement. 

In our simple SEIR model, we implicitly assumed that the latent and 

infectious periods were exponentially distributed. But we also simulated more 
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realistic distributions of the latent and infectious periods, such as a gamma 

distribution, as described in [37], and assessed the potential bias on estimates of the 

reproduction number (Rp).   

Next, we explored the uncertainty of Rp estimates. In the main analysis, we 

used Poisson distribution to model observational errors, where variance is equal to 

the mean, but we also tested higher levels of uncertainty, where the variance is 2, 3, 

or 4-times the mean. Moreover, to check whether the reproduction number estimates 

were well-constrained, we derived likelihood ratio confidence bounds for Rp.  

Lastly, we assessed the robustness of Rp estimates to a two-fold increase or 

decrease in the predefined CFP values (Table 1) and changes in the number of 

weeks used in the computations (4 to 6).  

 

Relationships between the reproduction number (Rp) and seasonal virus 

surveillance.  

We explored the relationships between Rp and the prevalence of the 3 influenza viral 

(sub)types circulating each season (A/H3N2, A/H1N1, B). Virus prevalence was 

defined as the proportion of respiratory samples that tested positive for each 

influenza (sub)type, as reported by the CDC laboratory surveillance conducted since 

1976 in the US [38-41]. The US was the only country among the 3 studied with 

publicly available virus surveillance data for many years. 
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RESULTS 

Estimates of the reproduction number (Rp) 

First, we estimated the reproduction number (Rp) for three decades in the 

inter-pandemic period using weekly P&I excess mortality curves in the US, France 

and Australia. Overall we found similar averages in the three countries: the mean 

reproduction number (Rp) was 1.3 (SE 0.05) in the United States, 1.3 (SE 0.05) in 

France and 1.3 (SE 0.07) in Australia (Figure 3, Wilcoxon test for pairwise 

comparisons between countries, all P ≥ 0.87). The reproduction number across flu 

seasons and countries lied in the range 0.9 to 2.0 with an overall mean of 1.3, and 

95% Confidence Interval (CI) 1.2-1.4. Larger variability in the estimates of the 

reproduction number was observed for Australia than for the United States and 

France; perhaps explained by the larger demographic noise and spatial heterogeneity 

in Australia (Figure 1). Indeed, Australia has the smallest population size of the 3 

countries studied, and most of the population is concentrated in coastal areas of the 

South-East. Overall, the SEIR transmission model fitted well to the epidemic rise of 

influenza-related deaths in the three countries, as shown in Figure 4. 

Applying the same methodological approach to influenza-specific deaths, 

rather than P&I excess deaths, gave similar results in the 3 countries. The mean 

reproduction number (Rp) was 1.3 (SE 0.04) in the United States, 1.3 (SE 0.05) in 

France and 1.2 (SE 0.08) in Australia (Wilcoxon test for pairwise comparisons 

between countries, all P ≥ 0.68). Further, estimates of the reproduction number 

using influenza-specific mortality were strongly correlated with those obtained 
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using P&I excess mortality data in the United States (ρ=0.61, P<0.001, n=27) and 

France (ρ=0.79, P<0.001, n=19) (Figure 5AB). A weaker correlation was found in 

Australia (ρ=0.17, P=0.74, n=6) (Figure 5C), probably due to the few overlapping 

seasons for which it was possible to estimate the reproduction number for both time 

series, as well as larger demographic noise and spatial heterogeneity. 

 Next, we assessed the sensitivity of Rp estimates to the CFP value and the 

number of epidemic weeks of mortality data used in the estimation. We found that 

Rp estimates did not change when we increased or decreased CFP by two-fold 

(respectively 0.1% and 0.4%, not shown). Moreover, Rp estimates were robust to 

increasing the number of epidemic weeks used in the estimation from 4 weeks, to 5 

or 6 weeks, for those seasons for which sufficient epidemic data was available 

(Figure 6, Wilcoxon test for differences in mean Rp between 4, 5 and 6 wks, P>0.25 

for all 3 countries). 

 Additional sensitivity analyses (supplement) showed that our estimates were 

robust to model assumptions and observational errors. When the latent and 

infectious periods were modeled via more realistic distributions than the 

exponential, the bias incurred in point estimates of Rp rapidly declined with the 

amount of epidemic data. When using 4 epidemic weeks of data as in our main 

analysis, we estimated that the bias was less than 0.13 (9%) on average (figure S1). 

Further, increasing the variance of measurement errors changed point estimates of 

Rp by less than 0.03 (3.3%) and increased the width of the 95% CI by 0.05 (26.8%) 

on average (maximum 0.24 (64.4%), supplementary table 1). In addition, profile 
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likelihood, showed that the two parameters estimated in the model, Rp and the initial 

number of infected individuals, were well-bounded and identifiable (figure S2). 

We then explored the relationship between seasonal estimates of influenza 

transmissibility and virus surveillance in the US and found that the reproduction 

number (Rp) differed by (sub)type of circulating viruses. Influenza A/H3N2 viruses 

were more frequently isolated in seasons with higher transmission (correlation 

between Rp and A/H3N2 virus prevalence, Spearman ρ=0.52; P=0.006) whereas by 

contrast, B viruses were associated with low transmission seasons (correlation 

between Rp and B virus prevalence, Spearman ρ=-0.55, P=0.004). There was no 

clear pattern of association for A/H1N1 viruses.  
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DISCUSSION 

 

We used an epidemic model to estimate the reproduction number (Rp) of 

inter-pandemic influenza seasons spanning three decades, using data on the weekly 

cumulative number of influenza-related deaths from the United States, France, and 

Australia. We found an average Rp of 1.3 (95% CI 1.2-1.4) across flu seasons and 

countries, with substantial inter-annual variability. Our model, based on SEIR 

framework and homogeneous mixing assumption, was kept minimal to estimate 2 

parameters each influenza season (Rp and the initial number of infected individuals). 

Although we did not consider an age-structured model, previous sensitivity analyses 

suggest that estimates of the reproduction number are not biased due to differences 

in age-specific transmission parameters and case-fatality proportion [14]. 

 Our study is limited from the epidemic data used in the estimation.  Excess 

deaths from pneumonia and influenza capture approximately 25% of the overall 

mortality burden of influenza [2]. Consequently, it was not possible to estimate the 

reproduction number for very mild epidemics (9%), where mortality is not a good 

proxy indicator for influenza transmission. The use of less sensitive mortality data 

can explain why Rp estimates and their 95% CI were below 1.0 for two mild 

influenza seasons (one in France and one in Australia).  Encouragingly, recent 

simulations have shown that estimation approaches relying on the cumulative 

number of cases are expected to be robust to substantial measurement error and 

underreporting of cases (such as occurs in mortality data), in particular when the 

true theoretical reproduction number is below 4.0 [42]. Moreover, we performed a 
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number of sensitivity analyses showing the robustness of our estimates to various 

assumptions, in line with previous research  [14].   

Unlike P&I data, influenza-specific death time series do not require 

modeling a seasonal baseline prior to fitting a transmission model [14-16, 19]. It is 

reassuring that mean and individual-season estimates using influenza-specific and 

P&I mortality data were similar for the two countries where sufficient years were 

available for comparison (US, France). Further, a similar modeling approach applied 

to long-term data on weekly influenza cases from France (41) gave consistent 

estimates (mean Rp =1.5 (SE 0.08)). Taken together, the consistency of mean and 

variance estimates of Rp confirms that long-term influenza mortality records can be 

used to study patterns of disease transmission, even at a refined weekly time scale 

[14, 18]. 

  An important limitation of using data aggregated by country is the 

potential effect of spatial heterogeneity, which could lead to underestimation of the 

reproduction number. However, recent US studies have shown that estimates of Rp 

for influenza are surprisingly similar across locations and spatial scales, and do not 

depend on local geographical or population factors [14, 18]. In addition, the 

comparison of historical influenza epidemic curves for England and Wales and 

Greater London concluded that even considerable geographical heterogeneity did 

not substantially alter Rp estimates [15]. 

 In our model, influenza is transmitted by serial contacts between 

infected and susceptible individuals. The model does not specify whether 

transmission occurs by direct or indirect contact, via droplets, fomites or aerosols, 
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since the relative contribution of each mode of transmission is unclear for influenza 

[32, 33, 43-45]. Unfortunately, there are very few experimental studies of human-to-

human transmission; besides, existing studies are inconclusive and predate the 

discovery of the influenza virus [32, 46, 47]. Indirect evidence for influenza 

transmission between humans can nevertheless be found in observational studies in 

close contact settings, such as airplanes, hospitals, households, schools, and day care 

centers [48-53]. In particular, influenza transmission is more intense in the 

household than in the community [51, 54], while clinical trials have shown that 

treating index cases with antivirals reduces secondary transmission to household 

members [55]. As regards animal studies, recent experiments in guinea pigs suggest 

that transmission occurs via aerosols in this mammalian host [44] – but whether this 

also applies to people is unclear. Overall, uncertainty in the source of exposure 

(household/community) and mode of transmission makes the estimation of the serial 

interval between infection in two successive cases difficult from observational 

studies alone [56, 57]. To account for this uncertainty, the different routes of 

influenza transmission are lumped into a single contact rate parameter (β) in our 

model. 

 While this is the first study to systematically estimate the reproduction 

numbers of influenza for multiple inter-pandemic seasons in different countries, our 

results are in overall agreement with a previous study reporting an estimate of 1.5 

for  a single A/H3N2 season in France [12]. An earlier study proposed estimates 

higher than ours (range 1.4 - 2.6) for several consecutive influenza seasons in 

England and Wales [15, 16], however the exact quantity measured in this work 



 20 

remains controversial [14, 31]. A particularly high Rp estimate (Rp >2.0) has also 

been reported for the 1951 influenza epidemic in England and Canada, however this 

epidemic was associated with unusally high mortality and transmissibility locally 

[19, 22].  

 By contrast to the scarcity of estimates for the reproduction number of inter-

pandemic influenza, several studies have recently proposed estimates for pandemic 

influenza [11, 13, 14, 17, 19]. The analysis of historical mortality and morbidity 

curves from past pandemics has revealed that Rp ranged between 1.5 and 3.0 for the 

1918 pandemic [11, 13, 14, 17, 19], 1.5-1.7 for the 1957 pandemic [13, 19], and 1.9-

2.2 for the 1968 pandemic [13, 19, 58], depending on the pandemic wave studied, 

geographical location, and estimation method. This is consistent with higher 

transmissibility in pandemic than inter-pandemic seasons, since the fraction of 

susceptible individuals is largest when an immunologically naïve population is 

exposed to an entirely novel pandemic virus (and Rp ~R0).  

 While the average inter-pandemic Rp seems rather invariant across 

geographical locations at around 1.3, there is substantial year-to-year variability 

around this average (SE=0.09, maximum Rp=2.1). Our results suggest that H3N2 

viruses are more transmissible than B viruses; A/H3N2 viruses are known to cause 

more severe epidemics than A/H1N1 and B viruses in terms of overall disease 

burden on mortality and severe morbidity [20]. This difference in transmissibility 

could be attributed to underlying differences in the age patterns of infection among 

influenza (sub)types. Influenza A/H3N2 viruses have the fastest evolutionary rates, 

causing reinfection of a single individual with the same subtype multiple times 
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through life [59], thereby allowing for a larger pool of susceptibles, and  higher 

transmissibility. By contrast, B viruses have the slowest evolutionary rate [59] and 

infect mainly children [60], perhaps explaining their lower transmissibility. A/H1N1 

viruses have intermediate evolutionary rate [59] and did not display a clear 

relationship with transmissibility in our study. Our finding of increased 

transmissibility of A/H3N2 viruses reinforces a recent study showing more rapid 

dispersal of A/H3N2 epidemics across the US, as compared with A/H1N1-B 

epidemics [18]. 

 One could further expect that transmissibility of inter-pandemic influenza is 

highest when new antigenic clusters of influenza A/H3N2 strains emerge every 2-5 

years and escape population immunity to hemagglutinin [61]; yet we could not 

detect a pattern in our data (not shown). Recent epidemiologic studies of pandemic 

and inter-pandemic influenza suggest that antigenic changes in the hemagglutinin, 

the most studied component of antibody-mediated immunity, is probably not the 

only determinant of a virus fitness and ability to spread in a population [19, 21]. The 

exact relationship between virus antigenic changes and population dynamics is still 

unclear, and a key area for future research. 

 Influenza epidemics display marked seasonal patterns in temperate 

countries, including the US, France and Australia [29, 62]. Our estimates of the 

reproduction number reflect transmissibility in wintertime, and it is likely that 

transmissibility declines in warmer months, due to changes in the host, the virus, or 

their interaction. The reasons for the seasonality of influenza are still heavily 

debated, although the susceptibility of the respiratory mucosa, vitamin D 
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production, human contacts, and virus survival are subject to seasonal variations, 

which could favor influenza transmission in colder months in high latitude countries 

[56, 57, 63, 64]. Influenza displays a pattern of year-round circulation and high 

disease burden in the Tropics [62, 65] and a key area for future research is to 

elucidate the seasonal triggers of influenza epidemics globally and estimate 

transmissibility in the Tropics. This type of work is contingent upon obtaining 

reliable data on influenza virus circulation and disease burden in Tropical countries 

[62]. 

 Overall, our results indicate that the reproduction number Rp for 

interpandemic influenza is below 2.1 in temperate countries, which has important 

implications for disease control. In a fully mixed population, transmission could be 

interrupted if ~52% of the population was successfully immunized and we discuss 

below whether this could be achieved with currently available vaccines. 

The influenza vaccination program in the US has traditionally targeted 

individuals who are at highest risk of severe disease outcome and are 

immunologically-impaired relative to the general population, in particular people 

over 65 years of age and those with chronic conditions [66]. Vaccination prevents 

70% of laboratory-confirmed infections in healthy adults and children [67, 68], but 

the immune response to vaccines varies greatly with age and is particularly weak in 

the elderly [9] and young children [69]. In particular, there has been no decline in 

influenza-related mortality among the elderly in the past 2 decades in the US, while 

vaccine coverage increased from 5% to 65% in this age group [8]. Analysis of long-

term trends in mortality in Italy revealed similar patterns, suggesting an alarming 
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lack of effectiveness of traditional vaccination programs targeted at the elderly [70, 

71]. In recent years, approximately 23% of the US population received influenza 

vaccination [72, 73], but we estimate that only 13% is effectively protected by 

vaccination at the start of the influenza season (range [11-16%]), assuming no 

mismatch between the vaccine strain and circulating strain. 

Complementary immunization strategies could target high transmitter groups 

such as school-age children, who are likely to respond well to influenza vaccination 

and are prone to transmit infection to their immediate contacts [74]. Figure 7 

illustrates that interrupting transmission in most influenza seasons (> 90%) would 

require vaccination of 60% to 100% of the population who responds well to vaccine, 

healthy people aged 2 to 64 years, depending on vaccine efficacy assumptions (see 

supplement for details on methods). On the one hand, this estimate would likely be 

lower if we had considered an age-structured transmission model with increased 

contacts in children [3]; however, data on influenza transmissibility and contact 

rates between and within different age groups are scarce. On the other hand, our 

estimate of herd immunity threshold is based on the current background level of 

natural immunity to influenza, resulting from continuous exposure to viruses 

circulating in the community. If influenza circulation gradually decreased due to 

improved vaccination coverage, natural immunity would wane, increasing the level 

of vaccine coverage necessary to achieve herd immunity.  

In conclusion, given that vaccine efficacy at one dose is suboptimal in 

population groups currently targeted for vaccination, many are not benefiting from 

direct protection. Relatively high vaccination coverage would be necessary in the 
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immuno-competent population, healthy people aged 2-64, in order to interrupt 

transmission of seasonal influenza, in addition to periodic re-vaccination due to 

evolving viral antigens and waning population immunity. An alternative strategy, 

perhaps less costly in the long run, would be the use of vaccines that are more 

immunogenic and provide longer-term protection, obviating the need for repeated 

vaccination. 
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TABLE 1:  Parameter definitions and baseline values used with the SEIR compartmental epidemic model. Only two 

parameters were estimated, the transmission rate and the initial numbers of exposed and infectious cases. That is, for 

simplicity we assume E(0) = I(0). 

Parameter Definition Source Estimate Range 

  

!  Latent period [14] 1.9 days  

γ Recovery period [14] 4.1 days  

CFP Case fatality proportion 

P&I 

Influenza-specific 

 

Estimated from data in [3, 14] 

 

0.2% 

0.05%* 

 

0.1% - 0.4% 

δ Mortality rate γ [CFP/(1-CFP)] 0.0005 per day 0.0002- 0.001 

S(0) Initial number of susceptible 

individuals 

[25-27] Entire population size  

β Transmission rate Estimated 

E(0) Initial number of exposed cases Estimated 

I(0) Initial number of infectious 

cases 

Estimated 

* influenza-specific deaths represent ~25% of P&I excess mortality.
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FIGURE LEGENDS 

 

Figure 1: 

Time series of weekly number of P&I and influenza-specific deaths per 100,000 in 3 countries 

(France, United States and Australia, blue curve). The red dashed line indicates the baseline 

mirroring the expected level of P&I mortality in the absence of influenza epidemic activity. 

 

Figure 2:  

Compartmental model indicating the transition of individuals among the different 

epidemiological stages during an influenza outbreak. See table 1 for parameter values. 

 

Figure 3: 

Boxplots of the reproduction number (Rp) of influenza seasons (1972-1997) in the United 

States, France, and Australia. The boxes have lines at the 25, 50 and 75 percentiles. The 

whiskers show the extent of the rest of the data extending to a maximum of 1.5 times the 

interquartile range. Points outside the ends of the whiskers are indicated with a red cross.  

 

Figure 4: 

Model fits to the epidemic rise of a number of representative influenza seasons in A) the United 

States, B) France, and C) Australia. The data are the circles and the solid lines are 200 hundred 

realizations of the model fit to the data obtained through the parametric bootstrap as explained 

in the text. 
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Figure 5: 

Correlation of the reproduction number estimates derived from P&I excess mortality 

and influenza-specific mortality data in 3 countries A) United States B) France and C) 

Australia. While a significant and positive correlation was observed for the Unites States and 

France, a weaker correlation was found in Australia, probably due to the few overlapping 

seasons for which it was possible to estimate the reproduction number (n=6) and the larger 

demographic noise and spatial heterogeneity. 

 

Figure 6: 

Sensitivity analysis: Boxplots of the reproduction number (Rp) as a function of the number of 

epidemic weeks used in the estimation, for the United States, France and Australia. Our 

estimates of Rp are robust to increasing the number of epidemics weeks used in the estimation 

to 5 or 6 epidemic weeks, given a sufficient time period of epidemic take-off (Wilcoxon test for 

differences in mean Rp between 4, 5 and 6 wks, P>0.66, US; P>0.34, France; P>0.25, 

Australia). 

 

Figure 7: 

Probability of interrupting transmission of seasonal influenza for various vaccination scenarios. 

Values are based on the empirical cumulative distribution of reproduction number estimates in 

the 3 countries (y-axis) and different vaccine coverage in the healthy population aged 2 to 64 

years, (x-axis), who is supposed to respond well to influenza vaccines  (see supplement for 

methods). Different curves represent different assumptions about vaccine efficacy in the healthy 

population. 



 34 

FIGURE 1 
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FIGURE 2 

 

 

 
β = Transmission rate; N= total population size; 1/

  

!  = Latent period; 1/γ = Recovery period; δ 
= Mortality rate.  
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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